

Welcome to Amoni

Amoni is a command line tool to manage local development tasks for an Anvil [https://anvil.works] application.

Amoni gives you:

	A preconfigured postgresql server running in a docker container

	A preconfigured Anvil application server running in a docker container

	Simple commands to start and stop those servers

	A preconfigured docker container to run your test suite

	Convenient access to the anvil error log

	Your app available in your browser at port 3030 on your local machine

	Your database server available on port 5432 on your local machine

	Commands to fetch an app from a remote repository and add it to your project either as the main app or as a dependency

	Stub files so that your autocompleter can see the tables available in your app

So your workflow becomes:

amoni init
cd <my_new_amoni_project_directory>
amoni start

>>> Wait a while the first time while the server images download
>>> Point my browser at http://localhost:3030
>>> Marvel at how simple that was

amoni test

>>> Sigh with relief at those lovely passing tests

amoni stop

>>> Sup coffee (or beverage of choice)

	Installation
	Pre-Requisites

	Install Amoni

	User Permissions

	Getting Started
	Create a New Amoni Project

	Start Your Servers

	Run Your Tests

	Stop Your Servers

	Howto…
	Add Dependencies

	Change the Main App

	Configure SSH

	Install Server Packages

	Use Autocompletion

	Reference
	API

Why the Name?

It’s Greek for anvil [https://translate.google.com/?sl=auto&tl=el&text=anvil&op=translate] and the idea for this library was conceived on a sunny veranda on the island of Κέρκυρα (Corfu).

	Index

	Search Page

Installation

Pre-Requisites

Amoni is built on top of Docker [https://docker.com] which needs to be installed
on your local machine.

As a minimum, you will need to install the Docker Engine [https://docs.docker.com/engine/install/]
and Docker Compose [https://docs.docker.com/compose/install/].

If you prefer, you can install the Docker Desktop App [https://docs.docker.com/desktop/]
which also includes the Engine and Docker Compose.

Install Amoni

The recommended installation method is to use pipx [https://pypa.github.io/pipx/]:

pipx install amoni

If you prefer, you can install amoni into any Python environment using:

python -m pip install amoni

User Permissions

Make sure you add your user to the docker group. For example, on Linux:

sudo usermod -aG docker $USER
newgrp docker

If you don’t do this, you may get socket permission errors when you run “amoni start”.

Getting Started

Create a New Amoni Project

In your terminal, navigate to a directory where you would like to create a new amoni
project and run:

amoni init demo

Amoni will now create a new directory named demo and set up the necessary
files and directories within it.

Start Your Servers

Change into your new directory and run:

amoni start

The first time you run this command, it will take several minutes to complete as it
downloads the images for the servers.

Any subsequent times you run the command, the downloads will be unnecessary and the containers will start immediately.

You should see output ending with:

Starting anvil app and database servers
Your app is now available at http://localhost:3030

In your browser, navigate to that url and you should see your app running.

If there were any errors, you can open the anvil error log which you will find in the ‘logs’ directory of your project.

Run Your Tests

You can now run the test suite for your app using:

amoni test

The test files are in the ‘tests’ directory of your project and are run using pytest [https://docs.pytest.org/en/7.1.x/].

Stop Your Servers

When you are finished, you can stop your anvil and database servers using:

amoni stop

Howto…

	Add Dependencies

	Change the Main App

	Configure SSH

	Install Server Packages

	Use Autocompletion

Add Dependencies

The app directory in your project must contain a folder for the app you wish to run
plus a folder for each of its dependencies. The dependencies must also be defined in
app/config.yaml in order for the app server to find them correctly.

To add a dependency to your project:

amoni app add --as-dependency <URL to the app> <Name of the dependency> <ID of the dependency>

If the URL you provide is at anvil.works (perhaps from within the Anvil IDE), you
will need to Configure SSH in order for it to work. Amoni does not support
username/password authentication.

Amoni will clone the repository from the URL you provide and add it as a git submodule
to your amoni project. The submodule will be placed in the app folder.

Amoni will also change the settings in app/config.yaml so that the app server will
know where to find the dependency you’ve just added.

Finally, amoni will commit the changes you’ve just made to your project.

Change the Main App

The app directory in your project must contain a folder for the anvil app you want to
run locally and app/config.yaml must point to that folder so that the app server
starts the correct app.

Amoni includes a ‘hello_world’ app which is the default app when you first
create a project.

To change the default to your own anvil app:

amoni app add <URL to your app> <Name of your app>

If the URL you provide is at anvil.works (perhaps from within the Anvil IDE), you
will need to Configure SSH in order for it to work.

Amoni will clone the repository from the URL you provide and add it as a git submodule
to your amoni project. The submodule will be placed in the app folder.

Amoni will also change the settings in app/config.yaml so that the app server will
now start the app you just installed and it will parse the app’s anvil.yaml file
and add stub entries to anvil-stubs/tables/app_tables.pyi (so that your autcompleter
will know what tables exist in your app).

Finally, amoni will commit the changes you’ve just made to your project.

You can now delete the ‘hello_world’ directory if you wish.

The next time you run ‘amoni start’, you should see your new app available in your browser.

Configure SSH

This guide assumes that you have already created an ssh key pair and added your public
key to Anvil.

If that’s not the case, you can find useful information on how to do those steps at,
for example:

	Creating an SSH key pair [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent]

	Adding your key to Anvil [https://anvil.works/docs/version-control/git]

In order for Amoni to know how to use your ssh keys to connect to a remote server (e.g.
anvil.works), add the following to your SSH config file (possibly ~/.ssh/config):

Host anvil.works
 IdentityFile <path to your ssh key>

Depending on the version of openssh you are using, you may also need the following:

Host anvil.works
 IdentityFile <path to your ssh key>
 HostkeyAlgorithms +ssh-rsa
 PubkeyAcceptedAlgorithms +ssh-rsa

See this forum post [https://anvil.works/forum/t/ssh-key-not-working/10227] for more information.

Install Server Packages

The default configuration for the anvil app server contains only the server itself.

If you need additional Python packages available on your server you can add them to the ‘requirements.txt’ file within the ‘app’ directory of your amoni project.

The next time you run ‘amoni start’, any packages listed in ‘requirements.txt’ will be installed and available.

Use Autocompletion

Autocompleters generally use the libraries installed in your current python environment
to provide autocompletion as you type. You should install the anvil-uplink package to
add Anvil’s classes and functions:

pip install anvil-uplink

In addition, many autocompleters can use Python stub files [https://mypy.readthedocs.io/en/stable/stubs.html]
to understand the options available to you as you type code.

Amoni makes use of this facility to provide autocompletion for the anvil app_tables
module where the tables are defined within an app’s anvil.yaml file. To enable this
feature, install the anvil-stubs package into your environment:

pip install anvil-stubs

Note - This package is provided by the anvilistas team and is not an official Anvil tool.

Amoni will then maintain additional stub files in your project’s anvil-stubs directory.
Those are regenerated whenever you add an app or dependency to your project but you can
refresh those at any time manually by running:

amoni stubs <name of your app>

Reference

	API
	AmoniRemoteCallbacks

	add_submodule()

	build_image()

	build_theme()

	generate_table_stubs()

	init()

	pull_image()

	run_service()

	set_app()

	set_dependency()

	start_service()

	stop_services()

API

	
class amoni.api.AmoniRemoteCallbacks(*args: Any, **kwargs: Any)

	

	
amoni.api.add_submodule(url: str, path: Path, name: str) → None

	Add a submodule to the current repository

	Parameters:

	
	url – The url of the submodule to add

	path – The directory where the submodule should be added

	name – The name of the submodule

	
amoni.api.build_image(name: str) → None

	Build a docker image
:param name: The name of the image to pull

	
amoni.api.build_theme(app: str) → None

	Build the theme for the given app

	Parameters:

	app – The name of the app

	
amoni.api.generate_table_stubs(app: str, target: Path = PosixPath('anvil-stubs/tables/app_tables.pyi')) → None

	Generate stub entries for app tables in anvil.yaml

	Parameters:

	
	app – The name of the app

	target – The stub file where the entries should be added

	
amoni.api.init(directory: Path, app: str) → None

	Initialise an amoni project

	Parameters:

	
	directory – The full path of the amoni project folder to create

	app – The name of folder within the ‘app’ folder which contains the app to be run

	
amoni.api.pull_image(name: str) → None

	Pull a docker image from the github registry

	Parameters:

	name – The name of the image to pull

	
amoni.api.run_service(name: str, remove: bool = True) → None

	Run a given service

	Parameters:

	name – The name of the service to start

	
amoni.api.set_app(name: str) → None

	Set the app to be run by the anvil app server

	Parameters:

	name – The name of the app

	
amoni.api.set_dependency(id: str, name: str) → None

	Set an app to be a dependency

	Parameters:

	
	id – The id of the dependency app

	name – The name of the dependency app

	
amoni.api.start_service(name: str, detach: bool) → None

	Start a given service

	Parameters:

	
	name – The name of the service to start

	detach – Whether to detach from the service console

	
amoni.api.stop_services() → None

	Stop all amoni services

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 amoni	

 	
 	
 amoni.api	

Index

 A
 | B
 | G
 | I
 | M
 | P
 | R
 | S

A

 	
 	add_submodule() (in module amoni.api)

 	
 amoni.api

 	module

 	
 	AmoniRemoteCallbacks (class in amoni.api)

B

 	
 	build_image() (in module amoni.api)

 	
 	build_theme() (in module amoni.api)

G

 	
 	generate_table_stubs() (in module amoni.api)

I

 	
 	init() (in module amoni.api)

M

 	
 	
 module

 	amoni.api

P

 	
 	pull_image() (in module amoni.api)

R

 	
 	run_service() (in module amoni.api)

S

 	
 	set_app() (in module amoni.api)

 	set_dependency() (in module amoni.api)

 	
 	start_service() (in module amoni.api)

 	stop_services() (in module amoni.api)

 nav.xhtml

 Table of Contents

 		
 Welcome to Amoni

 		
 Installation

 		
 Pre-Requisites

 		
 Install Amoni

 		
 User Permissions

 		
 Getting Started

 		
 Create a New Amoni Project

 		
 Start Your Servers

 		
 Run Your Tests

 		
 Stop Your Servers

 		
 Howto…

 		
 Add Dependencies

 		
 Change the Main App

 		
 Configure SSH

 		
 Install Server Packages

 		
 Use Autocompletion

 		
 Reference

 		
 API

 		
 AmoniRemoteCallbacks

 		
 add_submodule()

 		
 build_image()

 		
 build_theme()

 		
 generate_table_stubs()

 		
 init()

 		
 pull_image()

 		
 run_service()

 		
 set_app()

 		
 set_dependency()

 		
 start_service()

 		
 stop_services()

_static/file.png

_static/minus.png

_static/plus.png

